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Today’s distributed systems have evolved into a vast continuum, from hyperscale cloud data centers
spanning continents to thousands of regional edge sites operating closer to users and devices. These
systems are powering transformative workloads, such as AI-driven and microservices-based applications,
which are reshaping domains ranging from scientific discovery and smart manufacturing to autonomous
transportation, healthcare, and immersive real-time experiences. However, this evolution introduces
two pressing challenges: (1) the tight interdependencies and operational complexity of these large-scale
systems make them increasingly fragile and prone to cascading failures, rendering manual operation
infeasible, especially for latency-critical applications; and (2) the escalating computational demands of
modern applications have driven a significant rise in energy use and environmental costs, raising urgent
concerns about the sustainability of distributed computing. Addressing this dual challenge—ensuring
reliable operation under failure while minimizing environmental impact—requires a foundational
paradigm shift: Reliability and Sustainability must become first-class design principles in
distributed systems.

My research tackles this challenge by developing systems and algorithms that make distributed
computing inherently reliable and sustainable. While I have broad interests in large-scale distributed
systems, my current work is centered at the intersection of edge/cloud computing, AI systems,
and sustainability. Specifically, I develop: (1) fault-tolerant edge AI systems that enable resilient
inference in resource-constrained environments (§1); (2) reliable cloud microservices that automatically
diagnose and mitigate cascading failures (§2); and (3) sustainable data centers that dynamically adapts
resource management decisions to reduce energy consumption and carbon emissions while guaranteeing
service-level objectives (SLOs) (§3). My research is grounded in principled techniques, such as
optimization, machine learning, causal inference, and analytical modeling, to understand and optimize
the systems I have built. Looking ahead, I plan to extend this work to support AI systems that train
and serve foundation models (e.g., large language models) across the Cloud-Edge-IoT continuum, where
distributed training and inference demand new abstractions for fault tolerance, automated diagnosis and
recovery, energy-efficient resource management, and cross-tier optimization. Together, these efforts aim
to advance the design of distributed systems that make AI systems not only performant, but also inherently
reliable and sustainable by design (§4).

1 Resilient Edge AI
Edge AI brings machine learning inference closer to the data source–on device or edge servers–rather
than relying on distant cloud data centers. This shift enables millisecond-level decision-making for
applications such as real-time video analytics, AR/VR, robotics, and autonomous driving. However,
edge deployments are inherently fragile: hardware failures, resource contention, software bugs, and
wireless network disruptions can all interrupt edge applications. Since edge applications are typically
latency-sensitive and often mission-critical, even brief outages can lead to severe safety risks and
economic costs. To prevent such consequences, edge AI systems must be inherently resilient to failure,
ensuring the stringent SLOs can be met at scale. How can we design edge AI systems that are inherently
failure-resilient?
1.1 Rethinking Fault Tolerance Under Resource Constraints A conventional approach for
fault-tolerance is to provide replication for failover. However, unlike cloud data centers with abundant
resources and energy, edge sites are severely resource-constrained by power, space, and thermal
limitations. Under these constraints, cloud-style full replication, where the backup model is identical
to the primary, does not scale at the edge. How can we rethink replication to enable resilient edge AI in
resource-constrained environments?

To address this, my recent work, FailLite [SoCC ’25], introduces a novel mechanism: heterogeneous
replication. Rather than replicating full-size models, FailLite intelligently selects and deploys
smaller model variants as backup replicas. These variants are carefully optimized to balance the
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accuracy-resource trade-off inherent in modern machine learning models. FailLite also incorporates
the application’s criticality: critical applications use warm replicas for near-zero recovery time, while
less critical ones rely on cold replicas with progressive failover. This adaptive policy minimizes both
mean time to recovery (MTTR) and accuracy degradation under resource constraints. Evaluations on
real-world edge testbeds and large-scale simulations demonstrate that FailLite achieves significantly
higher recovery rates, reducing MTTR by 2× while incurring only 0.6% accuracy reduction compared
to full replication baselines.
1.2 Towards Resilient ML Pipelines Building on FailLite’s single-model resilience, my broader
research [MILCOM ’24] extends resilience to entire machine learning pipelines. Modern edge
AI applications often span multiple processing stages, are distributed across heterogeneous nodes,
and incorporate data from multiple sensors, each introducing additional points of failure. To
enable resilient ML pipelines, we propose a holistic framework comprising four complementary
mechanisms: (1) sensing redundancy, using multi-modal or multi-vantage sensing to tolerate sensor
failures; (2) structural resilience, designing loosely coupled pipelines to prevent cascading failures;
(3) heterogeneous replication, extending FailLite’s principle to distributed inference; (4) pipeline
reconfiguration, leveraging queuing theory to reconfigure model variants and resources at runtime.
Together, these mechanisms enable resilient edge AI systems that sustain performance under diverse
failures and resource conditions.

2 Reliable Cloud Microservices
Cloud computing has transformed distributed systems by offering elastic compute, storage, and AI
services through hyperscale data centers. In the cloud, microservice architecture has emerged as the
dominant paradigm for building large-scale applications because of its unmatched flexibility, scalability,
and agility. However, cloud microservice systems introduce a new kind of operational complexity. A
single application may comprise hundreds or even thousands of loosely coupled services, co-located
on shared infrastructure. These services are frequently updated to meet evolving customer demands,
creating a dynamic environment where performance issues–such as slow application responses–are
almost inevitable. The consequences of such anomalies are nontrivial: degraded user experience,
revenue loss, and substantial operational overhead from manual troubleshooting. Additionally, traditional
approaches that rely on human intervention are no longer practical at this scale. This reality calls for
self-healing systems that not only detect performance anomalies in real time but also uncover their root
causes and recommend actionable recovery strategies. How can we design reliable cloud microservices
that accurately diagnose root causes and recommend effective recovery actions?
2.1 Performance Diagnosis Performance issues in cloud microservices often trigger cascading
failures, resulting in widespread anomalies throughout the system. The highly dynamic, heterogeneous,
and interdependent nature of microservices makes it exceptionally difficult to localize the root
cause–determining both where performance anomalies originate and why they occur–among large-scale
anomalies. How can we accurately identify where performance anomalies originate and why they occur?

My research addresses this challenge with MicroRCA [NOMS ’20], a lightweight, graph-based
approach for root cause localization in cloud microservice systems. MicroRCA introduces two key
innovations : (1) it models anomaly propagation through both service-call dependencies and co-located
effects using an attributed graph, and (2) it leverages rich metrics from both the application and system
layers to precisely locate root causes. Experimental results demonstrate that MicroRCA achieves 89%
precision, outperforming baselines by at least 13%.

While MicroRCA effectively answers where anomalies originate, it does not explain why they
occur. To address this, my research explores deep learning [ICSOC ’21, CCGrid ’22] and causal
inference [ACSOS ’21, AIOps ’21] to identify the culprit metrics that indicate the root causes.
MicroRCA+ [ICSOC ’21] extends MicroRCA with deep learning to identify the culprit metric
responsible for performance degradation. MicroDiag [AIOps ’21] employs causal inference to derive
a metrics causality graph to infer root causes. Experimental results show that MicroDiag ranks 97% of
root causes in the top 3, outperforming baselines by at least 31.1%.
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2.2 Automatic Recovery Once the root cause of a performance issue is identified, the next challenge
is selecting an effective recovery action that restores service performance rapidly without introducing
side effects on other system components. How can we choose recovery actions that quickly restore SLOs
while minimizing side effects?

My research addresses this problem through MicroRAS [UCC ’20], a model-driven approach that
selects recovery action by balancing effectiveness and recovery time. MicroRAS defines effectiveness
as a function of two factors: the benefit of recovering the faulty service and the risk of affecting other
services, and estimates it via a graphical model that captures the action-effect propagation in the system.
Evaluation results show that MicroRAS successfully recovers 94.7% of service performance degradations
and completes recovery at least 4× faster than baselines.
Impact: My research on self-healing cloud microservices led to the MicroX series, which has been
widely cited. This work has been open-sourced, and has also drawn strong industry interest, including
invited talks at companies across the US and Europe, and has attracted more than $600,000 in external
research funding since 2021.

3 Sustainable Data Centers
The explosive growth of AI and other data-intensive workloads is pushing data centers to unprecedented
levels of energy demand. By 2030, their consumption is expected to exceed 1000 TWh annually–more
than double today’s levels–driving a dramatic increase in their carbon footprint. Meeting this
challenge requires a holistic strategy that spans improving energy efficiency with advances in power
management [CCGrid ’24], expanding renewable energy in the supply mix, and improving carbon
efficiency with resource management. Carbon-aware resource management leverages the spatiotemporal
variability of grid carbon intensity–measured as emissions per unit of electricity (g·CO2eq/kWh)–by
strategically shifting workloads across space and time. How can we design carbon-aware resource
management that reduces data center emissions while preserving SLOs?
3.1 Edge Placement Edge applications typically have strict end-to-end latency requirements (often
≤100 ms), making temporal workload shifting infeasible. Meanwhile, prior work shows spatial workload
shifting works in the cloud that has large geographic distances, but not at the edge, where long-distance
moves risk unacceptable latency. Is spatial workload shifting feasible for edge data centers? If yes, how
can we reduce emissions at the edge while meeting the low-latency requirements?

My research [HPDC ’25] answered the question for the first time. Our empirical study of carbon
intensity variations at mesoscale distances, spanning tens to hundreds of kilometers, demonstrates
significant variations (up to 10.8×) in grid carbon intensity within mesoscale regions, and such
mesoscale variations are prevalent worldwide. Based on this, we designed CarbonEdge, a carbon-aware
framework for reducing carbon emissions from mesoscale edge sites. It combines spatial variations
of grid carbon intensity with energy efficiency of heterogeneous edge devices to jointly optimize the
application placement and server activation, thereby minimizing the overall emissions of edge data
centers. Experimental results show that CarbonEdge achieves up to 78.7% reduction in regional
deployments and 49.5–67.8% at CDN scale, with one-way latency increases kept under 5.5 ms.
3.2 Cloud Scheduling Unlike the edge’s many small sites, the cloud has fewer, hyperscale data centers,
creating opportunities to schedule workloads within each site. In the cloud, a significant fraction of
computing demand comes from batch jobs (model training and scientific computing), which are often
delay-tolerant and elastic, enabling schedulers to reduce carbon by suspending/resuming jobs and scaling
their resources down/up when carbon is high/low. However, resources and workloads vary over time,
and job lengths are often unknown a priori. How can we design carbon-aware schedulers that minimize
carbon emissions for batch jobs with uncertain job length?

My research [Submitted’ 25] integrates the scheduling of parallel batch workloads with the
cluster-level resource provisioning to complete jobs in the time windows with low carbon intensity.
By incorporating a learning-based approach, the scheduler mitigates uncertainties and dynamics in
resource capacity, job length, and arrival rates, achieving a 57% reduction of emissions compared to
carbon-agnostic baselines.
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4 Future Plans
While my current research has taken important first steps towards designing reliable and sustainable
distributed systems for emerging workloads, such as AI and microservices, many important research
challenges remain. In the near term, I will work on two complementary research directions. The first is
to build reliable AI systems (§4.1) that can sustain the training and inference of foundation models (e.g.,
large language models) in the presence of failures or performance degradation. The second direction is
to advance sustainability across the Cloud-Edge-IoT continuum (§4.2), extending beyond single-layer or
workload-centric optimization to cross-layer coordination and sustainable control-plane design.
4.1 Reliable AI Systems AI systems are undergoing a transition from task-specific deep learning
models to general-purpose foundation models (FMs), such as large language models (LLMs) like GPTs
and vision models like SAM. These models are reshaping domains from code generation and scientific
discovery to real-time decision-making across the Cloud-Edge-IoT continuum. Training FMs now spans
thousands of GPUs, while inference must serve millions of concurrent queries under strict SLOs. At such
scales, failures are the norm: faulty GPUs, HBM errors, NVLink/NIC glitches, and thermal throttling are
all common. Even without hard faults, model performance (e.g., accuracy or throughput) can degrade
due to distribution drift or partial failures. Moreover, modern optimizations (e.g., speculative decoding,
Mixture of Experts, pipeline parallelism) introduce stateful dependencies that make traditional failover
insufficient. Thus, reliable AI systems require both rapid fault tolerance and automated performance
diagnosis and recovery to maintain SLOs. My prior research in edge AI and cloud microservices has
explored several of these challenges. In the future, I plan to expand this research toward developing
scalable methods for fault tolerance, online diagnosis, and automated recovery tailored to FM training
and inference across large-scale, distributed infrastructure. How can we guarantee reliable foundation
models training and inference across distributed systems without violating strict SLOs?
4.2 Sustainable Cloud-Edge-IoT Modern applications increasingly span the Cloud-Edge-IoT
continuum, from hyperscale cloud data centers, to mesoscale edge sites, and down to IoT sensors [SEC
’25]. This layered architecture enables emerging workloads such as collaborative inference across
distributed compute resources, including cloud GPUs, edge accelerators, and IoT devices. However, each
layer in this continuum operates under distinct resource constraints and energy profiles. These workloads
are often data-intensive, requiring frequent movement of intermediate or aggregated results across
layers, making network and storage critical contributors to overall energy consumption. Meanwhile,
the control plane that orchestrates these heterogeneous resources is becoming increasingly complex and
energy-intensive, further amplifying the sustainability challenge. My current research focuses on energy-
and carbon-efficient resource management within individual layers (e.g., cloud or edge). In the future, I
plan to extend this work to the full continuum, focusing on (1) modeling fine-grained energy consumption
of AI workloads accounting for compute, storage, and communication; (2) jointly optimizing compute
placement, data movement, and storage to reduce energy and carbon costs; and (3) designing a sustainable
control plane that orchestrates these layers with minimal overhead. In parallel, I am excited to explore
the interplay between reliability and sustainability to design energy-efficient reliability techniques. How
can we enable an energy sustainable Cloud-Edge-IoT continuum for AI workloads?

My long-term research agenda centers on developing end-to-end system architectures and
abstractions that make reliability and sustainability the defaults in large-scale distributed computing.
As both hardware (e.g., specialized accelerators and high-bandwidth interconnects) and applications
(e.g., foundation models and high-performance computing) continue to evolve, they introduce novel fault
modes, complex multi-objective trade-offs in SLOs, and new operational constraints that existing systems
fall short of handling. Addressing these challenges will require rethinking the system design principles,
combined with close collaboration across academia and industry. I plan to establish partnerships with
edge and cloud providers to access real-world failure traces, telemetry, and at-scale deployments. In
parallel, I plan to build interdisciplinary collaboration with researchers in areas such as AI, databases,
sensing systems, and application domains such as healthcare, scientific discovery, and transportation.
The overarching vision is to design and build a large-scale distributed computing fabric that is not only
fast and intelligent, but also inherently reliable and sustainable.
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